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INTRODUCTION 
 
 All biological processes at the cellular level are the consequence of a series of chemical-
physical reactions at the molecular level that occur within the micro-volume of the cell.  The 
collection of molecular species and the reactions among them is referred to here as a 
biomolecular reaction network.  The complete biomolecular reaction network for a cell includes 
thousands of molecular components and reactions involved in transcription, translation, 
molecular self-assembly, metabolic reactions, transport and physical movements.  Since these 
reactions occur in an extremely small reaction volume, the number of molecules of any one 
molecular species that can participate in a given reaction can range from single copies of genes 
to several hundred molecules of chemicals at the M concentration to several hundred thousand 
molecules of chemicals at the mM concentration.  As a consequence of the fact that a subset of 
all the reactions in the system involve low copy numbers of substrate molecules, the behavior of 
individual instances of  the system cannot be modeled accurately using continuous deterministic 
(C-D) approaches.. Thus, these natural micro-systems should be modeled and simulated using 
basic theory of discrete stochastic (D-S) chemical kinetics.  
 
 With the evolution of systems biology in recent years, interest in modeling and 
simulating the behavior of engineered genetic circuits in bacterial cells has increased.  In 
addition to living cells, nano-biotechnology researchers are exploring the possibility of 
developing and using artificial cellular constructs employing natural and engineered biological 
processes (Ishikawa, et al., 2004; Noireaux and Libchaber, 2004; Noireaux, et al., 2005; 
Oberholzer, et al., 1995; Pohorille and Deamer, 2002; Yu, et al., 2001).  In order to predict the 
behavior of these constructs, modeling and simulation of their biomolecular reaction networks 
are needed to enable the design and fabrication of both the constructs themselves and physical 
devices based on these constructs. 
 
 In the past ten years, several software packages have been developed and released to the 
general public that are focused on simulation and analysis tools for modeling and simulating 
biological systems (e.g., Adalsteinsson, et al., 2004; Dhar, et al., 2004; Ramsey, et al., 2005; 
Takahashi, et al., 2004).  Each of these software products has its advantages and disadvantages 
for different modeling needs.  We developed a software package – the Biomolecular Network 
Simulator (BNS) – that is specifically designed to operate on either single or multiple processor 
hardware.  The software allow one to build a model of a synthetic biomolecular reaction network 
and to investigate its behavior using several different stochastic algorithms.  In this paper, we 
focus on the application of the Biomolecular Network Simulator software to an example model 
to illustrate the advantages of using multiprocessor computational resources.  It should be 
recognized that many of the features of BNS can be found in other simulation software, but, to 
our knowledge, the unique combination of features in BNS cannot be found in any other 
software currently available. 
 

METHODS 
 
Stochastic Simulation Algorithm 
 
 The mathematical description of the behavior of stochastic biomolecular reaction 
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networks is based on Markov process theory (Gillespie, 1992).  The system behaves as a multi-
variant, discrete state, Markov jump process and is governed by the chemical master equation 
(CME). The solution of the CME is in fact the mathematically exact description of the behavior 
of the system.  For our purposes, we will consider a biomolecular reaction network consisting of 
NS identifiable molecular species, denoted Si (i = 1, 2, ..., NS).  These molecular species can 
undergo NR fundamental chemical reactions rk (k = 1, 2, ..., NR) and are confined to a fixed 
reaction volume, VR.  It is assumed that the system is well-mixed (homogenous) and at constant 
volume and temperature. Let s(t) be an NS dimensional state vector whose elements si(t) (i = 1, 2, 
..., NS) are the number of molecules in the system of each molecular species Si at time t. 
 
 The stochastic process that describes the behavior of the biomolecular reaction network is 
characterized by the state density function ),( tsP .  This function gives the probability that the 
system is in state s at time t, where s can take on any value in the allowable state space. );( tsP  is 
the solution of the CME: 
 

RN

k

k

kk

k tsPsatsPsa
dt

tsdP

1

),()(),()(
),(     (1) 

 
where ak(s,t) is the propensity of the kth fundamental reaction and k is the state change vector, a 
NS dimensional vector that specifies the changes in the number of molecules of each state 
variable when the kth reaction occurs.  Note, the sum is over all of the NR possible reactions that 
can occur.  The specification of the initial condition for the biomolecular reaction network of 
interest, )0,()(0 tsPsP , depends on the precision and accuracy of the measurement 
techniques used to experimentally characterize the system.  In theory, the system is in a single 
well defined state s0 at time t0, where the number of molecules of each molecular species is equal 
to the exact number of molecules of that species contained in the reaction volume VR at time t0. 
In this case, )(0 sP  is defined by the Kronecker delta function as 
 

),()0.()( 00 sstsPsP         (2) 
 
For our purposes, it will be assumed that the initial condition as defined by Equation (2) will 
hold and the state density function that is the solution of the CME can be written as the 
conditional probability density function ),,(

00
tstsP . 

 
 Usually, an analytical solution of the CME is not possible and direct numerical 
computation of the solution is computationally overwhelming due to the large state space. 
However, the direct simulation of exact (theoretically possible) trajectories in state space is 
feasible (see Appendix A for additional details).  The time evolution of the state vector s(t) for a 
theoretically possible instance of the system can be calculated using various algorithms proposed 
for Monte Carlo simulations of stochastic trajectories.  The Gillespie direct stochastic algorithm, 
(Gillespie, 1977) is used in this report to illustrate the stochastic behavior of a simple gene 
expression system.  The Gillespie direct stochastic algorithm theoretically generates exact 
simulations of system trajectories in state space if and only if all reactions in the biomolecular 
reaction network are fundamental reactions (Gillespie, 1977).  In the limit of an infinite number 
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of simulations, the statistical properties of the ensemble of exact simulations approaches those of 
the exact solution of the CME, i.e., for the first moment (mean) of s we have 
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where 
n

ts )(  is the estimate of the mean based on an ensemble of n simulations, the left hand 
sum is over all possible states in state space and the right-hand sum is over all values of the state 
vector observed in the n simulation runs.  In addition, the variance of s is  
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where )(tn  is the estimate of the standard deviation based on the ensemble of n simulations. 
 
 Although the basic biochemical reactions in a biomolecular reaction network are discrete, 
jump Markov processes and thus stochastic in nature, if the number of molecules in the system is 
large then the process can be approximated by a continuous Markov process (Gillespie, 1992). 
Furthermore, if the number of molecules and the volume increase in proportion such that the 
concentration of each species is constant (the so-called thermodynamic limit), then the solution 
describing the behavior of the state variables can be written as the sum of a sure variable that is 
the solution of the classical rate equations and a variable factor that decreases in magnitude as 

RV/1 . Thus, for sufficiently large reaction volume, keeping concentrations constant 
(consequently large number of molecules), the first moment of the probability density function of 
the state variables approaches the classical continuous deterministic solution of the reaction rate 
ODEs.  However, if there are only a few molecules of any given species, as is often the case in 
gene expression, this approximation will not accurately describe the instantaneous state of the 
system.  Furthermore, the C-D approach will provide no information concerning the temporal 
fluctuations of state variables of a given system nor the variability between multiple 
instantiations of the system with identical initial conditions. 
 
Biomolecular Network Simulator Software 
 
 The Biomolecular Network Simulator software was developed to allow for stochastic 
simulations on either desktop or multi-processor hardware (see Appendix B for additional details 
on the software or http://www.bioanalysis.org for complete documentation).  The front-end 
graphical users interface (GUI) and the backend data analysis tools are written in MATLAB. 
This allows the user to exploit the interactive features and visualization tools of MATLAB for 
setting up simulations and analyzing and interpreting the resulting data.  The simulation engine 
itself is written in the C language to maximize speed for the computationally intensive part of a 
simulation run.   
 
 The BNS software accepts two types of model definitions: (1) Systems Biology Markup 

http://www.bioanalysis.org/
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Language (SBML) format (Huska, et al., 2003) and (2) BNS format where models are defined by 
a set of MATLAB  m-files.  There are two types of output files: snapshot data and event log data. 
Snapshot data files contain the state of the system (number of molecules of each molecular 
species) and the number of reaction occurrences in each reaction channel since the last snapshot 
at user specified time intervals.  The second type of output files – the event log files – contain the 
record of every discrete event that occurs during the simulation.  
 
 Parallelization of the BNS code for simulations runs on high performance computing 
hardware is accomplished using the Message Passing Interface (MPI). MPI consists of a set of 
MATLAB scripts that implements a subset of the Message Passing Interface standard and allows 
MATLAB programs to run on multiprocessor architectures.  In our parallelization scheme, the 
‘master’ processor divides the total number of simulation runs into a set of jobs depending on the 
number of  available processors and sends a job to each of the ‘worker’ processors.  The 
snapshot data from the workers are sent back to the master processor for the interactive graphics 
but the event log files are saved to the hard drive by the workers.  In this approach to 
parallelization, the power of multiple processors is utilized to run a large number of simulations 
simultaneously and thus speedup the overall clock time for the batch job.  
 
 BNS allows the user to select the appropriate ‘Model’ and ‘Parameters’ directories and 

set the ‘Run’ mode for each simulation session.  If simulations are run in the interactive mode, 
the current results of the simulation appear on the monitor at specified plotting intervals during a 
simulation run.  Usually, HPC centers allocate limited resources (in terms of the number of 
processors and running time) for interactive simulations, therefore BNS can be run in ‘Batch’ 

mode.  In this mode all output data are stored directly on the hard drive for post hoc analysis. 
 
 The BNS software has a comprehensive set of tools for post-simulation analyses.  The 
most frequently used type of analysis is to plot the number of molecules of a particular molecular 
species versus time.  The number of molecules versus time plots can be created with both types 
of output files: snapshot data or event log data with the event log data giving an exact description 
of the behavior of the selected state variable.  A time-weighted average analysis provides for the 
calculations of the average number of molecules of a particular molecular species during a user 
selected time-interval.  The average is weighted according to the amount of time the compound 
exists in each state during the selected time-interval.  The averaging analysis can be performed 
for a single simulation run or for an ensemble of runs.  In the latter case, the between run average 
(the average of the individual time-weighted average over the ensemble of simulation runs) and 
standard deviation are plotted.  
 
 Complex biomolecular reaction networks that involve gene expression are usually stiff 
systems, i.e., contain reactions that occur on different time scales; some reactions have a low 
propensity and occur rarely while other reactions have a high propensity and occur frequently.  A 
unique feature of the BNS software is that the data stored allows the user to perform various 
event rate analyses on the simulation data to learn more about the basic nature of the system. 
Event rates (number of reaction events per unit time) in each reaction channel can be calculated 
for user-selected time-averaging intervals and plotted versus time.  These analyses provide 
important information about the behavior of the system, e.g., relative event rates for important 
reactions.  Furthermore, the event rate data can be used to calculate the rate of energy utilization 
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in selected reaction channels. 
 
Exemplar model 
 
 In order to investigate the simulation of a biomolecular reaction network with BNS, a 
simple model of a generic self-assembling catalytic ligation reaction in a cell-free bacterial 
transcription-translation (CFTT) system is explored.  The biomolecular reaction network consists 
of the transcription and translation of a single gene (geneA) to form an active catalytic enzyme 
(Pro_A) using a commercial gene expression system in an artificial vesicle.  The system is 
assumed to be contained in a spherical liposome the size of a bacterial cell (reaction volume = 5 
x 10-16 L).  The catalytic enzyme is transcribed from a plasmid vector and the expressed protein 
catalyzes the ligation of substrates Sub_A and Sub_B to form the product Prod_A.  The CFTT 
system contains all of the necessary bacterial components for transcription of a target gene from 
a plasmid containing the T7 bacteriophage RNA polymerase promoter.  In addition, the system 
contains all the necessary ingredients for successful translation of the mRNA generated by the 
T7-polymerase into the expressed protein. 
 
 To formulate the simplest, yet biochemically reasonable, model of the kinetics of the self-
assembly of the examplar biomolecular reaction network, the conceptual system model 
illustrated in Figure 1 was proposed.  This system consists of 45 state variables and 12 reactions 
(see Supplementary Material for a more complete description of the model).  Transcription 
consists of three reactions (r1 - r3) that include association and dissociation of the T7-
polymerase (T7_RNAp) and the T7-promoter site for geneA (T7_P) to form the promoter-
polymerase complex (T7_RNAp_T7_P) and the subsequent formation of the mRNA 
(geneA_mRNA).  The mRNA can either be degraded by a generic RNase (r4) or used as a 
template for protein synthesis.  Translation also consists of three reactions (r5 - r7) that include 
association and dissociation of the small ribosomal unit (Rib_s) and the ribosomal binding site 
on the geneA_mRNA to form the ribosomal-mRNA complex (Rib_s_geneA_mRNA) and the 
subsequent formation of the protein product (Pro_A). The protein product (Pro_A) is capable of 
catalyzing the ligation of Sub_A and Sub_B to form the metabolic product Prod_A via reaction 
r8.  All proteins can be competitively degraded by a generic protease (Prot), reactions r9 - r12. 
 
 Since gene expression reactions involve a single plasmid contained in the micro-volume 
of the vesicle, the transcription and translation reactions are stochastic in nature.  As discussed 
above, the most accurate way to model the biomolecular reaction system is to use a stochastic 
approach to solve the CME, with the number of molecules of each molecular species present in 
the micro-volume as variables.  However, the CME for this system cannot be solved explicitly. 
Here we use the Gillespie direct stochastic simulation algorithm to demonstrate the advantages 
of using the BNS software to obtain sufficient numbers of probabilistically correct trajectories 
consistent with the CME through the use of Monte Carlo simulations. 
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Figure 1:  Schematic diagram of a single gene biomolecular reaction network. 
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RESULTS 
 
Simulation of exemplar model using the Gillespie Direct Algorithm 

 
 In order to investigate the general behavior of the exemplar model, a series of simulations 
were run using the following conditions:  (1)  the Gillespie direct stochastic simulation 
algorithm, (2)  an SBML model definition, (3)  the stochastic reaction parameters and initial 
conditions in Tables C.2 and C.3, respectively, in Appendix C, and (4) the following simulation 
parameters: duration of simulation = 3600 sec, snapshot interval = 10 sec (giving a total of 360 
snapshots), and number of simulations = 10.  Due to the scale of the model (45 state variables), it 
is not possible to show the total set of data for all state variables, but a few selected and 
important state variables are shown in Figure 2 (remember, these are simulation data for a 
generic model and do not necessarily represent the behavior of actual state variables and/or 
reaction rates).  The data presented show the trajectory for a single simulation and the estimated 
mean (first moment) and standard deviation of the state density function P(s,t s0,t0) for each 
selected state variable.  Since the biomolecular reaction system under investigation is a closed 
system, when critical substrates are depleted, the affected reactions stop.  In this particular 
system, three substrates prove to be critical:  (1)  AA_Q (glutamine) is depleted at about 1400 
sec,  (2)  GTP is depleted at about 2500 sec, and  (3)  Sub_A  at about 3000 sec.  Thus, even 
though there is adequate geneA_mRNA present, protein synthesis terminates at about 1400 sec 
when the limiting amino acid, AA_Q, is depleted. Messenger RNA synthesis terminates at 
approximately 2500 sec when one of the nucleotides, GTP, is depleted.  Note, GTP is utilized by 
both mRNA synthesis and protein synthesis, thus if protein synthesis had not terminated at 1400 
sec due to depletion of one of the amino acids, it would have terminated at 2500 sec due to the 
depletion of GTP.  Finally, formation of the metabolic product Prod_A terminates when one of 
its substrates, Sub_A, is depleted at 3000 sec. 
 
 Each simulation run provides a probabilistically accurate trajectory of the system in state 
space.  However, the likelihood that any actual system would follow the simulated trajectory is 
small.  Thus, comparison of an single simulation run with time-series experimental data from a 
single vesicle is not particularly useful, except in the general sense of trends.  The value of 
individual simulation runs is to provide some intuitive insight into the possible behavior of the 
system under investigation.  For example, Figure 3 shows the state space trajectories for protein 
Pro_A as generated by 10 individual simulations.  In each case, the ultimate level of protein 
Pro_A is 108 molecules in the vesicle (this is determined by the limiting amino acid AA_Q). 
However, the time when protein synthesis is completed varies over a significant range, 
approximately 300 sec, from 1100 to 1400 sec.  As a consequence of this stochastic variability, 
when real-time experimental data from individual vesicles are obtained, the only meaningful 
comparison is between the experimental data and the simulation ensemble mean  the standard 
deviation (right-hand panels in Figure 2).  Two thirds of the time, the experimental data should 
fall within the envelop of the mean  the standard deviation.  However, significant excursions 
from the envelop can occur even when the model is a correct representation of the experimental 
system.  A better comparison between single vesicle experimental data and model simulations is 
between the experimental mean  the standard deviation obtained from multiple (many) single 
vesicle observations versus the mean  the standard deviation of an ensemble of a large number 
of simulations runs (see discussion below on the effect of the number of simulation runs on 
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estimates of the mean and standard deviations of the probability density function for the system). 
If experimental data is only obtained as the mean of a large sample of vesicles, i.e., a grab 
sample consisting of many vesicles, then the only meaningful comparison is between the macro-
sample mean and the mean of a large number of simulations at corresponding time points.  In 
this case, no data concerning the variability between individual vesicles can be obtained.  Note, 
the standard deviation obtained from multiple macro-mean experiments still would not 
correspond to the fluctuations exhibited in model simulations, but rather would be the result of 
experimental uncertainties (e.g., experimental measurement errors and non-identical systems), 
which are not simulated.  In fact, if there were no experimental error, then the macro-means of 
multiple experiments on identical systems would be identical. 
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Figure 2:  Selected results for simulations of the exemplar model.  The left-hand panel is a plot 
of the number of molecules of the selected state variable versus time for a single simulation run. 
These plots were obtained from the event log data and include every event that influenced the 
particular state variable.  The right-hand panel is an approximation to the state density function 
obtained by averaging the number of molecules over 10 simulation runs at selected time intervals 

(every 10 sec) using the snapshot data. 

 

(A) T7_RNAp-T7_P Complex                                                                 (B) geneA_mRNA  
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(C) Ribo_s-geneA_mRNA 

 
 
(D) Pro_A (Ligase  - geneA expression product) 
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(E) Sub_A 

 
 
 
(F) Prod_A 
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Figure 3:  Simulation data for possible trajectories in state space for the number of molecules of 
protein Pro_A. Ten individual simulations were run and the number of molecules of Pro_A 
versus time are plotted for each simulation. Event log data were used for these plots, therefore 
every translation event that produced a molecule of Pro_A is shown for each trajectory. 
 

 To further investigate the behavior of the system, the event rates of selected reactions 
were investigated.  As a consequence of the system behaving as a discrete jump Markov process, 
each event occurs instantaneously and the value of associated state variables change 
discontinuously at the time of the event.  As a consequence, there is no derivative of the state 
variables that would correspond to the C-D concept of rate of change.  Hence, for these 
processes, the 'reaction rate' is defined as the number of events counted during a time-averaging 
interval (TAI) divided by that time interval, giving an estimate of the event rate (number of 
events per unit time).  These estimates will depend on the TAI as illustrated in Figure 4.  A small 
time-averaging interval results in counting individual events and dividing by a small time 
interval giving large fluctuations within a individual simulation run and between multiple 
simulation runs depending on whether a particular time interval contains an event or not.  This is 
obvious in the TAI = 1 sec panel where the between run variability is large.  On the other hand, a 
large time-averaging interval will reduce the variability thus smoothing the data, but will affect 
the time resolution of dynamical changes in rates due to the averaging over longer intervals.  For 
the results below, a time-averaging interval of 10 sec was selected to maximize time resolution 
of system dynamics without significant artifacts due to too small a time-averaging interval.  
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Figure 4:  Effect of time-averaging interval (TAI) on estimated reaction event rates.  Estimated 
event rate data was calculated using various TAIs from 1 to 600 sec and averaged over 10 
simulations for selected reactions.  The mean is the average of the estimated event rate for all 10 
simulation runs at the given time interval and the standard deviation reflects the variability 
between runs.  Note the difference in scale between the TAI = 1 sec panel and the other panels. 
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The reaction event rate was computed for selected reactions using a user defined time averaging 
interval of 10 sec as discussed above and the results are shown in Figure 5.  In Figure 5(A) the 
total number of reaction events in each reaction channel is shown, averaged over the 10 
simulation runs.  In this examplar model, reactions r5, r6 and r8 dominate the behavior of the 
system.  Reactions r5 and r6 are the association and dissociation of the small ribosomal unit 
Ribo_s and the ribosomal binding site on gene_A messenger RNA, geneA_mRNA, and reaction 
r8 is the catalytic ligation reaction.  In figures 5(B) through 5(F), both the time-averaged event 
rate for a single simulation run (left-hand panel) and the mean  one standard deviation for the 
ensemble of 10 simulations (right-hand panel) are shown.  The reaction event rates vary during 
the simulation depending on the availability of substrates (and enzymes where required) and 
range from 0 - 0.3 reactions per sec for reaction r3 (transcription) to 0 - 18 reactions per sec for 
reaction r8 (catalytic ligation).  Thus, the fastest reaction is about 100 times faster than the 
slowest reaction.  A unique feature of stochastic systems is that the timing of specific events 
varies from one instance to the next.  An example of this effect is seen in Figure 6, where the 
reaction event rate for reaction r3 (transcription) is shown for each of the 10 simulation runs. 
These plots were obtained from the snapshot data with a time-averaging interval of 10 sec. 
Above each plot the time of the last transcription event is displayed.  The transcription reaction 
terminates when the available GTP is depleted and ranges from 2180 to 2551 sec with a mean 
and standard deviation of 2337  136 sec.  Thus, the timing of any specific event in a stochastic 
process will always appear as a distribution rather than a fixed time as would be the case for a C-
D process.  This effect will be addressed further in the discussion of the C-D approximation 
below. 
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(A) 
 

 
(B) Reaction r1 - Association of T7-RNAp and T7-P on geneA to form the T7_RNAp-T7_P 
complex 
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rxn1

Figure 5:  Time-averaged event rates of selected reactions.  (A)  Total number of reactions in 
each reaction channel during simulation (left hand panel is plotted with a linear scale, the right 
hand panel uses a log scale).  (B) - (F)  Time-averaged event rates for selected reactions - 
number of events per sec averaged over 10 sec intervals.  Left hand panel shows the averaged 
rate for a single simulation run.  The right hand panel is the mean  SD for the ensemble of 10 
simulation runs. 
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(C) Reaction r3 - Transcription 
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(D) Reaction r5 - Association of Rib_s with geneA_mRNA to form the Rib_s_geneA_MRNA 

 

(E) Reaction r7 - Translation 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

Time

N
u
m

b
e
r 

o
f 

re
a
c
ti
o
n
 o

c
c
u
rr

e
n
c
e
s
 p

e
r 

ti
m

e
 u

n
it

Binned Reaction occurences v s. time.  Ev aluated f or runs 1 to 1

Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_data

 

 

rxn5

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

Time

N
u
m

b
e
r 

o
f 

re
a
c
ti
o
n
 o

c
c
u
rr

e
n
c
e
s
 p

e
r 

ti
m

e
 u

n
it

Binned Reaction occurences v s. time.  Ev aluated f or runs 1 to 10

Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_data

 

 
rxn5

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

N
u
m

b
e
r 

o
f 

re
a
c
ti
o
n
 o

c
c
u
rr

e
n
c
e
s
 p

e
r 

ti
m

e
 u

n
it

Binned Reaction occurences v s. time.  Ev aluated f or runs 1 to 1

Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_data

 

 

rxn7

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

N
u
m

b
e
r 

o
f 

re
a
c
ti
o
n
 o

c
c
u
rr

e
n
c
e
s
 p

e
r 

ti
m

e
 u

n
it

Binned Reaction occurences v s. time.  Ev aluated f or runs 1 to 10

Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_data

 

 

rxn7



 

18 
 

 

(F) Reaction r8 - Catalytic Ligation 
 

Figure 6:  Individual reaction event rate plots for reaction r3 (transcription) for 10 simulation 
runs. Reaction event rates were calculated with a TAI of 10 sec. The time of the last reaction 
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Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_parsed
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Binned Reaction occurences v s. time.  Ev aluated f or runs 8 to 8

Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_parsed

 

 

rxn3

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

N
u
m

b
e
r 

o
f 

re
a
c
ti
o
n
 o

c
c
u
rr

e
n
c
e
s
 p

e
r 

ti
m

e
 u

n
it

Binned Reaction occurences v s. time.  Ev aluated f or runs 9 to 9
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Comparison between single and multi-processor simulation runs 

 
 Running a simulation session as a batch job on multi-processor HPC hardware entails a 
certain amount of overhead, e.g., the time it takes to breakup the job into smaller tasks and assign 
the problem to each processor on the front end and the collection and data storage on the back 
end.  As a result, the speed-up gained by using multi-processor hardware is to a degree 
dependent on how computationally intensive the problem is.  For a relatively simple problem 
that is not particularly computationally intensive, the majority of the clock time for the 
simulation session is taken up with overhead.  Whereas, for a problem that is computationally 
intensive, the computations involved in the actual simulation are the time consuming component 
of the simulation process.  To test this effect, we ran a batch job with the exemplar model using 
multi-processor HPC hardware to evaluate the speed-up in clock time with increasing numbers 
of processors.  Specifically, we executed 10000 simulation runs of the exemplar model as a batch 
job on an HP XC machine with distributed memory architecture using the Gillespie direct 
stochastic simulation algorithm and various numbers of processors (Figure 7).  Speed-up was 
calculated as the clock time it took to run the batch job on a single processor divided by the clock 
time for the same batch job using multiple processors.  As a consequence of the manner in which 
parallelization using multiple processors was implemented (parallel simulations on multiple 
processors), full utilization of the BNS software should result in a speed-up proportional to the 
number of processors used. Up to 10 processors, the speed-up was approximately linear with the 
number of processors for this computationally simple model.  However, the speedup observed by 
running the model using 20 and 50 processors in the batch mode was only 15.6- and 19.6-fold, 
respectively.  This drop-off in performance is due to the significant role that set-up overhead 
plays in the total batch run time.  For this simple model, the actual computation of the state 
variable trajectories for each simulation run is very small compared to the time involved in 
compiling and distributing the model to each processor.  Thus, the performance using more than 
10 processors results in diminishing returns when the computational demand of the simulation 
session is small. 

 
 To further explore this effect, we repeated the test with a '10x' exemplar model, where 
initial values of all state variables were increased by a factor of 10.  This is equivalent having 10 
plasmids containing geneA present in the same reaction volume with ten times the number of 
substrate molecules available.  The speed-up results using the 10x model are also given in Figure 
7.  For this computationally more complex problem, the value of additional processors is clearly 
apparent even when 50 processors are accessed.  Thus, the value of multi-processor hardware is 
clearly dependent on the computational dimensions of the problem. 
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Figure 7:  Scaling of simulation run time with the number of processors.  Each model was run
10000 times as a batch job using the BNS software on an HP XC machine with distributed 
memory architecture and the Gillespie direct stochastic simulation algorithm and various 

 

numbers of processors.  Speed-up was calculated as the run time for the batch job on one 
processor divided by the run time with the given number of processors.  

 
 

Improvement in estimating the mean and standard deviation of state variables and reaction rates 

with the number of simulation runs 

 
 The mean and standard deviation of the number of molecules averaged over the ensemble 
of simulation runs at time t is an estimate of the first moment and variance of the random 
variable s as defined by the solution of the CME, P(s,t s0,t0).  As the number of simulations 
increases, these estimates improve.  This can be seen by inspecting the estimated mean  SD 
between batch jobs with increasing numbers of simulation runs (Figure 8).  The estimated 
ensemble mean  SD for the number of molecules of the polymerase-promoter complex 
(T7_RNAp_T7_P) is shown in Figure 8(A).  For this state variable, the possible states in state 
space are either 0 or 1, thus, the  number of molecules of the complex fluctuate over time from 0 

1 or 1  0 in any given simulation (Figure 8(A), top left plot).  At any given time, the mean 
over simulation runs fluctuates significantly from one sample time to the next when averaged 
over a small number of simulation runs - i.e., the mean appears to be noisy when the number of 
simulations are small (lower panel of Figure 8(A)).  However, this is merely a consequence of 
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the approximate statistical estimate of the first moment of the solution of the CME using a small 
number of simulations and the standard error of the mean will decrease with increasing n as 

nSD (where SD is the standard deviation of the ensemble distribution).  In fact, the exact 
mean, )(ts , is a smooth function of time as the series of approximations with increasing n in 
the lower panel of Figure 8(A) suggests.  Only for estimations of the mean with n  100 runs 
does the shift in the mean at approximately 2300 sec become well defined.  This shift is due to 
the cessation of mRNA synthesis.  Another point to note from the top panel of Figure 8(A) is that 
the estimates of the SD of the ensemble, 

n
t)( , also fluctuate significantly from one time point 

to the next when n is small, but tends to smooth out with increasing n as the estimates of the SD 
improve. 
 
 Figure 8(B) shows the behavior of geneA_mRNA as n increases.  Here, the estimates of 
the ensemble mean and SD again shows significant fluctuations from one time point to the next 
when n is small due to the inaccuracies in each estimate of 

n
ts )(  and 

n
t)( . As n increases, 

each individual estimate of the mean of s(t) improves and the plot approaches the exact smooth 
curve for )(ts .  Also, the estimates of the SD also improve with increasing n and the SDs from 
one time to the next smooth out.  The dependency of the accuracy of the estimates of the mean 
and SD on the number of simulations is an issue that must be taken into consideration when 
dealing with stochastic simulations; model predictions of experimental observations will only be 
exact in the limit of n   simulations.  Thus, it is necessary to use a large number of 
simulations to investigate the behavior of the of the system if one wished to fit model predictions 
to experimental data.  The larger the number of simulations the better the estimate of the model 
prediction, thus reducing an additional source of error that is not present when fitting solutions of 
C-D ODEs to experimental data. 
 
 
Figure 8:  Comparison of estimates of the mean and standard deviation of selected state variables 
with increasing numbers of simulation runs.  For each state variable, the top panel is the mean  
SD for various numbers of simulations plotted at 10 sec intervals and the bottom panel is only 
the mean.  In each lower panel, the solution of the C-D ODE solution is also given. (A) the 
T7_RNAp-T7_P complex and (B) geneA_mRNA. 
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time-averaging interval of 10 sec for reactions r1 and r8 are given in Figure 9.  For reaction r1 
(the association of the polymerase, T7_RNAp, with the promoter for geneA, T7_P, to form the 
T7_RNAp-T7_P complex), a single simulation, n = 1, indicates that the reaction occurred 
anywhere from 0 to 4 times in any 10 sec counting intervals (corresponding to event rates of 0 - 
0.4 events/sec) with large fluctuations from one time point to the next.  If multiple simulations 
are run, the estimated event rate can be averaged over the ensemble of simulations.  As can be 
seen from Figure 9(A), averaging over multiple runs gives a more consistent estimate of the 
mean and SD of the event rate as a function to time.  Even for a reaction that occurs at a 
significantly greater rate than reaction r1, e.g., reaction r8 (Figure 9(B)), the effect of averaging 
over multiple simulations is still apparent. 
 
Comparison between exact simulations and the C-D approximation 

 
 Although the basic biochemical reactions in a biomolecular reaction network are 
stochastic in nature, the fact that some of the molecular species in the system are present in 
relatively large numbers should allow for the approximation of the first moment of the state 
variables by the continuous deterministic approach.  To investigate this possibility, the exemplar 
model was simulated using the C-D ODE approach (see Supplementary Material for reaction 
parameters).  The results are shown in Figure 8 for the selected state variables and in Figure 9 for 
the selected reaction event rates.  As is evident, with one exception, the C-D approximation gives 
a reasonable representation of the ensemble average for the state variables for this particular 
model.  The one noticeable difference between the two approaches can be seen in the regions 
where there is a transition in the dynamics due to the termination of certain reactions.  In these 
regions, the ensemble means of the S-D simulations tend to have smooth transitions whereas the 
C-D simulation has a sharper discontinuity.  This effect is due to the variability in the timing of 
the transition in the S-D approach as discussed above.  Each individual S-D simulation has a 
rather sharp transition when these reaction terminate, but because the time of the transition varies 
from simulation to simulation, the ensemble mean has a smooth transition.  An additional 
limitation of the C-D approximation is that no information on the variability in the number of 
molecules of state variables in individual instances can be obtained from this approach. 

Figure 9:  Comparison of estimates of the time-averaged reaction event rates with increasing 
numbers of simulation runs.  The time-averaged event rates (time-averaging interval = 10 sec) 
averaged over n simulation runs are plotted for: (A) reaction r1 - association of T7_RNAp and 
T7_P to form the T7_RNAp-T7_P complex, and (B) reaction r8 - the catalytic ligation reaction. 

Similar issues arise when investigating reaction event rates.  Estimates of the event rate using a 
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Bin Size = 10.  Time range = 0 to 3600.  Source data f ile = gillespie_100_parsed
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Discussion 
 
 The Biomolecular Network Simulator (BNS) software developed in this laboratory 
allows users to simulate the stochastic behavior of complex biological reaction networks with the 
flexibility of utilizing either single or multi-processor hardware.  Some of the more important 
features of the BNS software are: 

 
- the usage of MATLAB and C-coded functions allowing the user to combine intensive 

visualization of data with high speed computations; 
- the implementation of parallelized code for multiple simultaneous simulations allowing 

the user to run BNS on multi-processor machines; 
- the availability of the option to run the code in the interactive or batch mode; 
- a user friendly graphical user interface allowing the user to easily select and modify 

models, model parameters, simulation parameters and analysis tools; and 
- a comprehensive set of analysis tools providing for post-simulation analysis and plotting 

of results. 
 
These features allow the user to perform a wide range of simulation tasks in a relatively 
transparent environment.  
 
 The BNS software was used to investigate the generic behavior of gene expression in a 
cell-free transcription-translation system in a closed system consisting of an artificial vesicle. 
The ability to simulate this system allows one to identify the critical factors that limit the 
behavior of the system.  Although the model for the system is relatively crude, it is clear that the 
availability of limiting amino acids controls the ultimate expression of proteins, the availability 
of GTP limits transcription of the plasmid gene to form mRNA and the availability of substrates 
for the catalytic ligation reaction limits the generation of the product.  This quantitative 
knowledge can be used to attempt to optimize the system to maximize production of products, 
either proteins or metabolites.  As the models for the CFTT-vesicle system become more 
sophisticated, a more detailed understanding of its behavior will evolve. 
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Appendix A - Stochastic Simulation Algorithm 
 
 The mathematical description of the behavior of stochastic biomolecular reaction systems 
is based on Markov process theory.  The system behaves as a multi-variant, discrete state, 
Markov jump process and is governed by the chemical master equation (CME).  The solution of 
the CME is in fact the mathematically exact description of the behavior of the system.  For our 
purposes, we will consider a biomolecular reaction network consisting of NS identifiable 
molecular species, denoted Si (i = 1, 2, ..., NS).  These molecular species can undergo NR 
fundamental chemical reactions Rk (k = 1, 2, ..., NR) and are confined to a fixed reaction volume, 
VR.  It is assumed that the system is well-mixed (homogenous) and at constant volume and 
temperature.  Let s(t) be an NS dimensional state vector whose elements si(t) (i = 1, 2, ..., NS) are 
the number of molecules of each molecular species Si at time t. 
 
 The probability that the kth fundamental reaction Rk will occur in the next time interval dt, 

)(tRprob k , is physically defined by molecular collision theory in solution and the quantum 
mechanics of molecular interactions.  It has been shown (Gillespie, 1977) that a reasonable 
mathematical formulation of this probability is defined by: 
 

)(),()( dtodttsatRprob kk         (A1) 
 
where ak(s,t) is the propensity of the kth fundamental reaction (see Table A1).  Furthermore, for 
biomolecular reaction systems at constant temperature and volume, the system is temporally 
homogenous which means that ak(s,t) is not explicitly dependent on time. 
 

)(),( satsa
kk           

 (A2) 
 
However, ak(s) is implicitly dependent on time through its dependency on s(t).  he relationship in 
Equation (A1) is exactly correct to the order of dt.1 
 
 The NR by NS dimensional stoichiometry matrix  provides the necessary information as 
to the change in the number of each molecular species when a particular reaction occurs.  The kth 
row of the stoichiometry matrix, k, is a NS dimensional vector, referred to as the state change 
vector, that specifies the changes in the state variables when the kth reaction occurs. 
 
 The stochastic process that describes the behavior of the biomolecular reaction network is 
characterized by the state density function ),( tsP .  This function gives the probability that the 
system is in state s at time t, where s can take on any value in the allowable state space.  );( tsP  
is the solution of the CME: 
 

                                                 
1 Order of dt, indicated by o(dt), means 0

)(
lim 0

dt

dto
dt
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Note, the sum is over all of the NR possible reactions that can occur. The first term when summed 
over all possible reactions give the increase in probability due to transitions into state s from 
states one reaction away, and the second term give the decrease in probability due to reactions 
that originate in state s and result in transitions to new states one reaction away. 
 
 The initial condition for the biomolecular reaction network of interest, )(0 sP , depends on 
the precision and accuracy of the measurement techniques used to experimentally characterize 
the system.  In theory, the system is in a single well defined state s0 at time t0, where the number 
of molecules of each molecular species is equal to the exact number of molecules of that species 
contained in the reaction volume VR at time t0.  Thus, )(0 sP  can be defined by the Kronecker 
delta function as 
 

),()( 00 sssP           
 (A4) 

 
For our purposes, it will be assumed that the initial condition as defined by Equation (A4) will 
hold and the state density function can be written as the conditional probability ),,(

00
tstsP . 

 
 An analytical solution of the CME is not possible usually and direct numerical 
computation of the solution is computationally overwhelming due to the large state space (the 

dimension of the state space is 
SN

i

Max

isd
1

)1( where Max

is is the maximum number of 

molecules of si that can theoretically exist in the system).  However, the direct simulation of 
exact (theoretically possible) trajectories in state space is feasible.  For a multi-variant, discrete 
state, Markov jump process, it is possible to define the next-jump density function ),,( tskp  

such that: dtskp ),,(  is the probability that the next jump will occur between t +  and t +  

+ d  and will involve reaction Rk, i.e., the event will change the state of the system to s + 
k 

given that the system was in state s at time t.  It can be shown for a temporally homogenous, 
multi-variant, discrete state, Markov jump process that 
 

),(),(),,(
21

tskptsptskp        (A5a) 
 
where 
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31 
 

)(

)(
),,(),(

00

2
sa

sa
dtskptskp k         (A5c) 

 
and 
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),(
1

tsp  is the conditional density function for the waiting time to the next reaction with the 

mean waiting time of 1/a0(s). ),(
2

tskp  is the conditional density function that the next reaction 
will be the kth reaction and is equal to the ratio of the propensity for the kth reaction to the total 
propensity for all reactions in the system. 
 
 The evolution of the state vector s(t) can be calculated using various algorithms proposed  
for Monte Carlo generation of stochastic trajectories.  The Gillespie direct simulation algorithm, 
(Gillespie, 1077; Table A1), which is one of the algorithms implemented in the Biomolecular 
Network Simulator software, answers two questions: (1) which reaction will occur next, and (2) 
what is the waiting time for the next reaction to occur.  To answer these questions, two random 
numbers uniformly distributed over the interval (0,1) – r1 and r2 – are generated.  The first 
random number is used to determine the next reaction Rk  according to the probability density in 
Equation (A5c).  Thus, k is selected to satisfies the condition 
 

k
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01
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 (A6) 
 
 
where a0 is given by Equation (A5d). 
 
 The distribution of the waiting time is given by the probability density function Equation 
(A5b).  The waiting time for the next reaction is calculated as (Gillespie, 1977) 
 
       

20

1
log
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ra
         

    (A7) 
 
 Once the next reaction and its waiting time are determined, the reaction is executed and 
the state of the system is changed according to the state-change vector vk.  The simulation time is 
increased by  and any reaction propensities affected by the reaction are recalculated.  If the 
simulation time is less than the total duration of the simulation the algorithm is repeated to 
generate the next simulation step, otherwise, the simulation is terminated.  The Gillespie 
stochastic algorithm is exact for the fundamental reactions indicated in Table A2. independent of 
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the number of reacting molecules in the system.  
 
 A second algorithm based on the modifications of Gibson and Bruck (2000) is also 
included in the BNS software.  This algorithm, which is also mathematically exact, allows for the 
reuse of random numbers to minimize the computational time required to generate new random 
numbers for each reaction step.  
 
 The third algorithm available in the BNS software is the -leaping algorithm of Gillespie 
(Gillespie, 2001).  The tau-leaping algorithm calculates a time interval  which encompasses 
more than one reaction event and satisfies the Leap Condition, i.e., the expected state change 
induced by the leap must be sufficiently small that no propensity function changes its value by a 
significant amount.  Several methods have been proposed recently to choose the size of the time 
interval for tau-leaping (Chatterjee, et al., 2005; Gillespie, D., 2001, Gillespie and Petzold, 2003; 
and Tian and Burrage, 2004).  We implemented the tau-leaping method proposed by Cao et al. 
(2006).  In that method a tau selection formula is given by 
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      (A8) 

 
where gi is the highest order of reaction in which species Si appears as reactant,  is an error 
control parameter, Irs is the set of indices of all reactant species, and  
 

j

jiji xax )()( ,           

 (9) 
 
and 
 

j

jiji xax )()(
22 .           

 (10) 
 
 After the time interval  has been selected, the number of firings of each reaction 
channel during this time interval is approximated as a Poisson random variable.  The Poisson 
random variable can have arbitrary large sample value and it is possible that the population of 
some of the molecular species can run negative.  Therefore, a critical number of molecules nc 
(typically in the range of 5-20) was introduced.  If the number of molecular species gets less then 
nc, all reaction in which that species appears as reactant are defined as critical.  These reactions 
are simulated by the stochastic simulation algorithm.  We calculate the sum of propensity 
functions of all the critical reactions c

a0
 and generate a second candidate time  according to 
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tskp  is the conditional density function that the next reaction 
will be the kth reaction and is equal to the ratio of the propensity for the kth reaction to the total 
propensity for all reactions in the system. 
 
 The evolution of the state vector s(t) can be calculated using various algorithms proposed  
for Monte Carlo generation of stochastic trajectories.  The Gillespie direct simulation algorithm, 
(Gillespie, 1077; Table A2), which is one of the algorithms implemented in the Biomolecular 
Network Simulator software, answers two questions: (1) which reaction will occur next, and (2) 
what is the waiting time for the next reaction to occur.  To answer these questions, two random 
numbers uniformly distributed over the interval (0,1) – r1 and r2 – are generated.  The first 
random number is used to determine the next reaction Rk  according to the probability density in 
Equation (A5c).  Thus, k is selected to satisfies the condition 
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where a0 is given by Equation (A5d). 
 
 The distribution of the waiting time is given by the probability density function Equation 
(A5b).  The waiting time for the next reaction is calculated as (Gillespie, 1977) 
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 Once the next reaction and its waiting time are determined, the reaction is executed and 
the state of the system is changed according to the state-change vector vk.  The simulation time is 
increased by  and any reaction propensities affected by the reaction are recalculated.  If the 
simulation time is less than the total duration of the simulation the algorithm is repeated to 
generate the next simulation step, otherwise, the simulation is terminated.  The Gillespie 
stochastic algorithm is exact for the fundamental reactions indicated in Table A1. independent of 
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Table A2:   Summary of the main steps in the Gillespie stochastic simulation algorithm. 
 
                      
 
Step 1: Initialization.  Set the state vector s = s0 (the initial number of molecules of each molecular 

species) and set the time t = 0. 
  

Step 2: Calculate the propensity ai (s)for each reaction Ri and their sum a0(s) 
 

Step 3:  Generate two random numbers r1 and r2 uniformly distributed over the interval (0,1). 
 

Step 4: Find the next reaction Rj according to Eq. (1). 
                 

Step 5: Calculate the waiting time j for the next reaction according to Eq. (4). 
 
Step 6: Update the number of molecules of all molecular species affected by reaction Rj according to the 

state-change vector vj . 
 

Step 7: Update the simulation time t = t + j. 
 

Step 8: Calculate a new propensity ai(s) for each reaction that was affected by Step 6 and their sum ak(s) 
 

Step 7: Return to Step 3 or termination. 
 

Termination. Simulations are terminated when the simulation time exceeds the maximal time of the 
simulations. 
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Appendix  B - Biomolecular Network Simulator Software 
 
 
 The Biomolecular Network Simulator software is designed to provide an environment to 
perform stochastic simulations and to analyze the resulting data.  BNS can be run on any 
computer platform where MATLAB 6.5 or newer is installed.  Complete details of the BNS 
software can be found at http://www.bioanalysis.org. 
 . 
 
Input Data 
 
 A model is a set of mathematical relationships that describe the behavior of biochemical 
reactions that control cellular biological processes.  Each of the ‘Model’ directories contains one 

or more subdirectories with model description files and/or different set of parameters for the 
same model and an ‘Output’ directory where the results of simulations are stored.  There are two 
types of model directories: one for models defined in the Systems Biology Markup Language 
(SBML) format (Hucka, et al., 2003) and one for models defined in BNS format as a set of 
MATLAB  m-files.  There are two additional m-files in each ‘Parameters’ directory – 
general_constants.m and storing_and_plotting.m, which contain information about simulation 
conditions and storing of the output data, respectively.  In addition, BNS allows one to perform 
simulations with multiple parameter sets, with each parameter set being run multiple times.  
Simulations with multiple parameter sets can be used for optimization and sensitivity analysis of 
the model.  

 
Output Data 
 
 There are two types of output files:  snapshot data and event log data.  Both of these files 
are in MATLAB format.  Snapshot data files contain the state of the system (number of 
molecules of each molecular species) at user specified time intervals. The information stored in 
the snapshot files are used to create runtime interactive graphics and for post hoc analysis of the 
data.  The second type of output files – the event log files – contain the record of every discrete 
event that occurs during the simulation.  The user should be aware that event log files may 
require considerable memory or hard disk space and, therefore, may create memory management 
problems for simulations involving a large number of long runs or for large reaction networks. 
 
Running Simulations 
 
 The BNS can be run either in command line mode or via a GUI.  The GUI allows the user 
to modify model parameters at runtime and to execute simulations in the interactive or batch 
mode on HPC resources.  The main dialog window of the BNS GUI is shown in Figure B1.  It 
allows the user to select the appropriate ‘Model’ and ‘Parameters’ directories and set the ‘Run’ 

mode. A click on the ‘Details’ button next to the ‘Parameters’ directory opens a new window, 

shown in Figure B2.  This dialog window allows the user to modify model parameters and to set 
parameters for the simulation.  If simulations are run in the interactive mode, the results of 

http://www.bioanalysis.org/
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simulations will instantly appear on the screen.  Usually, HPC centers allocate limited resources 
(in number of processors and running time) for the interactive simulations, therefore BNS can be 
run in ‘Batch’ mode.  In this mode all output data are stored on the hard drive for further 
analysis. 
 
Analysis 
 
 The BNS has a comprehensive set of tools for the post-simulation analysis.  A GUI for 
the analysis tools allows the user to easily select the data and to set conditions for the analysis. 
Multiple types of post-simulation analyses are available. 
 
Plots of number of molecules vs. time 

 
 The most frequently used type of analysis is a plot of the number of molecules vs. time. 
Such plots are available in the interactive mode or as post-simulation analysis.  There are two 
ways to create plots: each compound is plotted on a separate figure or multiple compounds are 
plotted on the same figure window (grouping mode).  The plot in Figure B3 is in grouping mode 
and shows the behavior of two molecular species, S1 and S2, over the time interval of 1500 
seconds for a biomolecular reaction network containing transcription, translation and metabolic 
reactions.  The number of molecules vs. time plots can be created with both types of output files: 
snapshot data or event log data. 
 
Time-weighted average analysis  

 
 A time-weighted average analysis refers to the calculations of the average number of 
molecules of a particular molecular species during a user selected time-bin.  The average is 
weighted according to the amount of time the compound exists in each state during the selected 
time-bin.  The time weighted average is then plotted versus time.  The averaging analysis can be 
performed for a single run or for a selected set of runs.  
 
 When the analysis is applied to multiple runs, the plot shows the between run average 
(the average of each run’s time-weighted average) and standard deviation.  As in the previous 
case, the user can plot each compound on a separate figure or multiple compounds on the same 
figure.  Figure B4 shows the between run average of the time weighted average number of 
molecules for the same 50 runs as shown on Figure B3 using a time averaging interval of 10 sec. 
 
Reaction frequency analysis 

 
 Complex biomolecular reaction networks usually contain reactions that occur on different 
time scales: some reactions have a low propensity and occur rarely; other reactions are very fast 
and occur frequently.  The data stored in the event log files allow the user to perform various 
reaction frequency analyses of the simulation data to learn more about the basic nature of the 
system.  One type of analysis creates plots of the total number of times each reaction occurred 
during the simulation.  Figure B5 shows an example of a histogram of the average number and 
standard deviation of the number of reaction occurrences in each reaction channel averaged over 
the 50 runs in Figure B3.  The number of reactions is shown in the logarithmic scale. 
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 Reaction rates (number of reactions per unit time) in each reaction channel can be 
calculated for user-selected time-bins and plotted versus time.  Such types of analyses provide 
important information about the behavior of the system. 
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Figure B1:  A screen shot of the main BNS GUI dialog window. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B2: The parameters dialog window of the BNS GUI allows the user to modify the model 
parameters and to set simulation parameters. 
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Figure B3:  The evolution of the number molecules of molecular species S1 and S2 with time. 
The snapshot data for 50 runs are shown.   
 
 
 

   
 

 
 
Figure B4:  The averaged number of compounds S1 and S2 in the time interval (0, 1500) for the 
same simulation runs as in Figure 4.  For each simulation, the time weighted average was 
calculated using a 10-sec time-bin and the time weighted averages were averaged over the 50 
simulation runs.  Data for the mean ± SD are shown. 
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Figure B5: The average total number of reaction occurrences in each reaction channel. The data 
are for the mean ± SD for the 50 simulation runs. 
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Appendix C - geneA_CFTT_0p0 Model Documentation 
 
Conceptual Model 

Figure C.1:  The schematic diagram of the geneA self-assembling catalytic reaction model. 
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 The diagram in Figure C.1 is a schematic of the various reactions and material flow 
connections between state variables of the geneA_CFTT_0p0 model.  This is the simplest model 
for the biomolecular reaction system that retains the basic features of the system.  Because many 
of the reactions are described at the conceptual level as lumped, macro-reactions, this model 
represents an approximation to the exact fundamental representation of the biomolecular reaction 
system that would be rigorously compliant with the basic tenants of the Markov process theory 
of multi-variant, discrete state, temporally homogenous, Markov jump processes. 
 
 To transform the conceptual model into a schematic more representative of the 
mathematical description of the system, the model schematic in Figure C.1 can be redrawn as in 
Figure C.2. 

 
Figure C.2: Schematic diagram of the mathematical model of the geneA_CFTT_0p0  model.
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In this representation, each reaction is defined and all of the substrates for each reaction are 
easily identified. In this case the mathematical model of the geneA-CFTT system is a mixture of 
fundamental and lumped reactions. 
 
Reactions for a Minimal Model of geneA Self-assembly in a Cell-Free Transcription-Translation 

System 

 
Transcription (Reactions r1 - r3)) 
 
 In the simplest model (denoted by the postfix _0p0), the transcription process in the cell-
free transcription-translation (CFTT) expression system is treated as a two step reaction: (1) 
reversible association and dissociation of the T7 RNA polymerase (T7_RNAp) to the T7 
promoter site (T7_P) on the plasmid to form the initiation complex (T7_RNAp-T7_P), and (2) 
creation of the geneA mRNA (geneA_mRNA) in an instantaneous event at a time determined by 
the stochastic probability.  The formation of the mRNA utilizes the appropriate number of 
nucleotide triphosphates (NTPs: ATP, GTP, CTP and UTP) and creates one pyrophosphate 
molecule (PPi) as byproduct per NTP incorporated.  The number of each NTP used is determined 
by the sequence of the geneA gene and the number of PPi formed will be equal to the total 
number of nucleotides in the translated portion of the geneA gene. 
 
 The specific reactions involved in transcription are: 
 
Reaction r1: The initial step in transcription of the geneA gene is the association of T7 RNA 
polymerase with its promoter site on the plasmid containing the geneA gene.  
 

T7_P + T7_RNAp -> T7_RNAp-T7_P 
 
Reaction r2: Dissociation of the polymerase-promoter complex. 
 

T7_RNAp-T7_P -> T7_P + T7_RNAp 
 
 Reactions r1 and r2 are fundamental stochastic reactions that are described by standard 
Markov propensities for bi- and uni- substrate reactions, respectively: 
 

RVPTRNApTca /_7_711          
   

 
and 
 

PTRNApTca _7_722          
   

 
As there is only one plasmid in the reaction volume, the state variable T7_P that represents the 
T7 promoter on the plasmid can fluctuate only between values of 1 and 0, where T7_P = 1 
implies the geneA T7 promoter site is unoccupied and T7_P = 0 when T7_RNAp is associated 
with the promoter site. Thus, 
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Reaction r3:  Elongation and ultimate formation of the geneA_mRNA polymer by the 
incorporation of the nucleotide tri-phosphates (UTP, CTP, ATP and GTP) into the RNA 
polymer. Inorganic pyrophosphate (PPi) is formed as a byproduct. 
 

T7_RNAp-T7_P + 381 UTP + 429 CTP + 377 ATP + 369 GTP -> 
geneA_mRNA + T7_P + T7_RNAp + 1556 PPi 

 
where the nucleotide composition of a generic geneA has been used. Reaction r3 is a lumped, 
macro-reaction and must be treated as an approximation to the exact series of fundamental 
reactions that constitute the transcription reaction.  Again, as the consequence of there being only 
one plasmid in the reaction volume, when T7_RNAp is associated with the promoter site, 
T7_RNAp-T7_P = 1, and the transcription reaction (r3) can occur.  The propensity for reaction 
r3 is 
 

RVUTPCTPGTPATPfPTRNApTca /),,,(_7_7 333       
 
which can take on only two values 
 

1_7_7/),,,(
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R

   

 
where ),,,(3 UTPCTPGTPATPf  describes the dependency of the polymerization reaction on the 
NTP substrates.  Obviously, a detailed model of the transcription reaction would be more exact 
and the natural dependency of the reaction on the availability of substrates would appear as a 
consequence of the fundamental reactions involved in transcription.  However,  for the purposes 
of this simple model, we will treat r3 as a lumped macro-reaction and use an approximate 
phenomenological formulation for the propensity based on the Michaelis-Menten approximation 
for isomerization reactions. Thus, 
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Note, 0  f3(s4,s5,s6,s7)  1, thus this formulation guarantees that the propensity will be zero if 
any one of the substrates is depleted, and will be limited to a maximum value of c3 even when 
there is excess of the NTP substrates. 
 
 The probability that transcription will occur is non-zero as long as the polymerase binds 
to the promoter and there are sufficient NTP substrates available to form complete mRNA 
polymers. As transcription progresses, the geneA_mRNA formed serves as either the substrate 
for the translation process or for the mRNA degradative process. 
 
Translation (Reactions r5-r7) 
 
 As with the transcription process, in this simplest conceptual model (geneA_CFTT_0p0), 
the translation process is treated as a two step process: (1) reversible association-dissociation of 
the ribosomal small unit (Rib_s) to the ribosomal binding site (RBS) on geneA_mRNA, and (2) 
translation of the mRNA into the Pro_A protein by an instantaneous event at a time determined 
by the stochastic probability. 
 
 The three translation reactions are: 
 
Reaction r5: Association of the ribosomal small-unit (Rib_s - 30S subunit) with the ribosomal 
binding site (RBS) on the geneA_mRNA. 
 

geneA_mRNA + Rib_s -> Rib_s-geneA_mRNA  
 
Reaction r6: Dissociation of the ribosomal small subunit from the RBS on the geneA-mRNA. 
 

Rib_s-geneA_mRNA -> geneA_mRNA + Rib_s 
 
 As with transcription, the translation reactions r5 and r6 are fundamental stochastic 
reactions that are described by standard Markov propensities for bi- and uni- substrate reactions, 
respectively: 
 

RVmRNAgeneAsRibca /__55         
  

 
and 
 

mRNAgeneAsRibca __66          
  

 
Reaction r7:  Elongation and ultimate formation of the Pro_A protein by the incorporation of the 
appropriate number of amino acids into the protein polymer.  Upon completion of the reaction, 
the Pro_A protein is released and the geneA_mRNA, ribosomal large subunit (Rib_l) and the 
ribosomal small subunit (Rib_s) are returned to the available pools for reuse.  Guanidine 
diphosphate, adenine diphosphate and inorganic phosphate (Pi) are formed as by-products. 
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Rib_s-geneA_mRNA + Rib_l + 44 A + 9 C + 27 D + 43 E + 22 F + 40 G + 7 H + 31 I + 

23 K + 53 L + 13 M + 18 N + 25 P + 20 Q + 34 R + 29 S + 29 T + 21 V + 8 W + 21 
Y + 1552 GTP + 517 ATP -> geneA_mRNA + Rib_s + Rib_l + Pro_A + 1552 GDP 
+ 517 ADP + 2068 Pi 

 
Note, the amino acid composition of Pro_A is based on the nucleotide sequence of geneA.  Once 
Rib_s is bound to the geneA_mRNA forming the Rib_s-geneA_mRNA complex, the protein 
product, Pro_A , can be assembled via the translation reaction (r7) with a phenomenological 
propensity of 
 

RVVAAIAAGTPATPmRNAgeneAsRibflRibca /)_,...,_,,,__(_ 777
   

 
where the substrate dependency is given by 
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Here, the propensity of the translation reaction is modulated by the availability of the substrates, 
including the Rib_s-geneA_mRNA complex, energy substrates GTP and ATP, and all of the 
amino acids (AA_I - AA_V).  The modulation factor f5, 0   f5  1,  is of the form of the product 
of hyperbolic factors and accounts for certain realistic features of the reaction, namely, a zero 
propensity when any of the substrates is not available to complete the polymerization reaction 
and a maximum propensity, c7*Rib_l/VR, when all substrates are available in saturating 
concentrations. 
 
Metabolic Reaction 
 
 The enzyme mediated metabolic reaction catalyzed by Pro_A results in the ligation of 
Sub_A and Sub_B to form Prod_A using ATP as a source of free energy. 
 
Reaction r8: Catalytic ligation of Sub_A and Sub_B to form Prod_A using ATP as a cofactor: 
 

Pro_A + Sub_A + Sub_B + ATP -> Pro_A + Prod_A + ADP + Pi. 
 
 The synthetic reaction forming Prod_A is mediated by the product of the geneA gene. 
The enzyme Pro_A utilizes ATP to carry out the ligation of Sub_A and Sub_B.  The sequence of 
micro-reactions that constitutes the ligation reaction - association and dissociation of substrates 
ATP, Sub_A and Sub_B and the enzyme, splitting ATP to ADP and Pi to provide free energy for 
the ligation reaction, and dissociation of Prod_A and by-products from the enzyme - is treated as 
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a single lumped macro-reaction in this version of the model.  The reaction propensity is 
expressed as  
 

RVBSubASubATPfAoca /)_,_,(_Pr 888
        

 
where the f-factor 
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again modulates the reaction propensity to assure that it does not exceed the maximum 
propensity, c7*Pro_A/VR, when all substrates are saturating and that the propensity goes to zero 
when any substrate is depleted.  The product of the reaction is Prod_A along with the by-
products ADP and inorganic phosphate. 
 
Degradation Reactions 
 
 There are five degradation reactions in this model: one for degradation of mRNA and 
four for proteolytic degradation of the proteins present in the biomolecular reaction network. 
Since there is only one mRNA present, that reaction is treated as an independent reaction. 
However, since there are four proteins present in the system - Pro_A, T7_mRNAp, the generic 
RNase, the generic protease Prot, they are all subject to degradation by the single generic 
protease Prot.  Since this model assumes that the same protease degrades all four proteins, then it 
is necessary to use a slightly modified formulation for the propensity that takes into 
consideration competition between the substrates for degradation.   
 
Reaction r4:  Degradation of geneA_mRNA by a generic RNase resulting in the formation of the 
constituent nucleotide mono-phosphates. 
 

geneA_mRNA + RNase ->  RNase + 381 UMP + 429 CMP + 377 AMP + 369 GMP 
 
The mRNA degradation reaction (r4) introduces the possibility that geneA_mRNA will be 
degraded by the generic RNase.  The products of the degradation process are the nucleotide 
monophophates (NMPs: AMP, GMP, CMP, UMP).  Here, the mRNA degradation reaction is 
treated as a lumped macro-reaction again using an approximate phenomenological formulation 
for the propensity. 
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the hyperbolic functional form.  The stochastic reaction parameter c4 for this reaction is set low 
in the current model so that there is little degradation of mRNA. 
 
Reaction r9:  Degradation of the Pro_A protein by a generic protease (Prot) resulting in the 
formation of the constituent amino acids. 
 

Pro_A + Prot ->  Prot + 44 A + 9 C + 27 D + 43 E + 22 F + 40 G + 7 H + 31 I + 23 K + 53 L 
+ 13 M + 18 N + 25 P + 20 Q + 34 R + 29 S + 29 T + 21 V + 8 W + 21 Y 

 
Since this reaction is treated as a lumped, macro-reaction and the fact that the protease is 
assumed to degrade all proteins present in the biomolecular reaction network, the 
phenomenological propensity is given by 
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This expression is a phenomenological factor that modulates the propensity for reaction r9 to 
compensate for utilization of the enzyme by the other substrates. 
 
Reaction r10:  Degradation of RNase protein by the generic protease resulting in the formation 
of the constituent amino acids.  (The amino acid composition of the RNase in the following 
reaction is an arbitrary placeholder) 
 

RNase + Prot -> Prot + 50 A + 50 C + 50 D + 50 E + 50 F + 50 G + 50 H + 50 I + 50 K + 50 
L + 50 M + 50 N + 50 P + 50 Q + 50 R + 50 S + 50 T + 50 V + 50 W + 50 Y 

 
Since this reaction is treated as a lumped, macro-reaction and the fact that the protease is 
assumed to degrade all proteins present in the biomolecular reaction network, the 
phenomenological propensity is given by 
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where 
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Reaction r11: Degradation of T7 polymerase protein by the generic protease resulting in the 
formation of the constituent amino acids.  (The amino acid composition of the T7 polymerase in 
the following reaction is an arbitrary placeholder) 
 

T7_RNAp + Prot -> Prot + 50 A + 50 C + 50 D + 50 E + 50 F + 50 G + 50 H + 50 I + 50 K + 
50 L + 50 M + 50 N + 50 P + 50 Q + 50 R + 50 S + 50 T + 50 V + 50 W + 50 Y 

 
Since this reaction is treated as a lumped, macro-reaction and the fact that the protease is 
assumed to degrade all proteins present in the biomolecular reaction network, the 
phenomenological propensity is given by 
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Reaction r12: Self-degradation of the generic protease protein resulting in the formation of the 
constituent amino acids.(The amino acid composition of the generic protease Pro in the 
following reaction is a placeholder) 
 

Prot + Prot -> Prot + 50 A + 50 C + 50 D + 50 E + 50 F + 50 G + 50 H + 50 I + 50 K + 50 L 
+ 50 M + 50 N + 50 P + 50 Q + 50 R + 50 S + 50 T + 50 V + 50 W + 50 Y 

 
Since this reaction is also treated as a lumped, macro-reaction and the fact that the protease is 
assumed to degrade all proteins present in the biomolecular reaction network, the 
phenomenological propensity is given by 
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Code for the SBML model description of the geneA_CFTT_0p0 model 

 
 
<?xml version="1.0" encoding="UTF-8"?> 
<sbml xmlns="http://www.sbml.org/sbml/level1" level="1" version="1"> 
  <model name="geneA"> 
    <listOfCompartments> 
      <compartment name="" volume="1"/> 
    </listOfCompartments> 
    <listOfSpecies> 
      <specie name="T7_RNAp" compartment="C1" initialAmount="301"/> 
      <specie name="T7_P" compartment="C1" initialAmount="1"/> 
      <specie name="T7_RNAp_T7_P" compartment="C1" initialAmount="0"/> 
      <specie name="geneA_mRNA" compartment="C1" initialAmount="0"/> 
      <specie name="Rib_s" compartment="C1" initialAmount="301"/> 
      <specie name="Rib_l" compartment="C1" initialAmount="301"/> 
      <specie name="Rib_s_geneA_mRNA" compartment="C1" initialAmount="0"/> 
      <specie name="Pro_A" compartment="C1" initialAmount="0"/> 
      <specie name="Prot" compartment="C1" initialAmount="301"/> 
      <specie name="RNase" compartment="C1" initialAmount="301"/> 
      <specie name="GC" compartment="C1" initialAmount="0"/> 
      <specie name="ATP" compartment="C1" initialAmount="189329"/> 
      <specie name="ADP" compartment="C1" initialAmount="29197"/> 
      <specie name="AMP" compartment="C1" initialAmount="0"/> 
      <specie name="GTP" compartment="C1" initialAmount="234178"/> 
      <specie name="GDP" compartment="C1" initialAmount="0"/> 
      <specie name="GMP" compartment="C1" initialAmount="0"/> 
      <specie name="CTP" compartment="C1" initialAmount="150500"/> 
      <specie name="CMP" compartment="C1" initialAmount="6622"/> 
      <specie name="UTP" compartment="C1" initialAmount="166754"/> 
      <specie name="UMP" compartment="C1" initialAmount="0"/> 
      <specie name="Pi" compartment="C1" initialAmount="0"/> 
      <specie name="PPi" compartment="C1" initialAmount="0"/> 
      <specie name="AA_A" compartment="C1" initialAmount="43645"/> 
      <specie name="AA_C" compartment="C1" initialAmount="94213"/> 
      <specie name="AA_D" compartment="C1" initialAmount="61705"/> 
      <specie name="AA_E" compartment="C1" initialAmount="79163"/> 
      <specie name="AA_F" compartment="C1" initialAmount="45752"/> 
      <specie name="AA_G" compartment="C1" initialAmount="76454"/> 
      <specie name="AA_H" compartment="C1" initialAmount="33411"/> 
      <specie name="AA_I" compartment="C1" initialAmount="52976"/> 
      <specie name="AA_K" compartment="C1" initialAmount="21973"/> 
      <specie name="AA_L" compartment="C1" initialAmount="44247"/> 
      <specie name="AA_M" compartment="C1" initialAmount="37324"/> 
      <specie name="AA_N" compartment="C1" initialAmount="12943"/> 
      <specie name="AA_P" compartment="C1" initialAmount="205884"/> 
      <specie name="AA_Q" compartment="C1" initialAmount="2107"/> 
      <specie name="AA_R" compartment="C1" initialAmount="49665"/> 
      <specie name="AA_S" compartment="C1" initialAmount="35217"/> 
      <specie name="AA_T" compartment="C1" initialAmount="8428"/> 
      <specie name="AA_V" compartment="C1" initialAmount="37926"/> 
      <specie name="AA_W" compartment="C1" initialAmount="29498"/> 
      <specie name="AA_Y" compartment="C1" initialAmount="56588"/> 
    </listOfSpecies> 
    <listOfParameters> 
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      <parameter name="vol" value="5e-016"/> 
    </listOfParameters> 
    <listOfReactions> 
      <reaction name="r1" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="T7_RNAp"/> 
          <specieReference specie="T7_P"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="T7_RNAp_T7_P"/> 
        </listOfProducts> 
        <kineticLaw formula="c1*T7_RNAp*T7_P/vol"> 
          <listOfParameters> 
            <parameter name="c1" value="1e-018"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r2" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="T7_RNAp_T7_P"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="T7_RNAp"/> 
          <specieReference specie="T7_P"/> 
        </listOfProducts> 
        <kineticLaw formula="c2*T7_RNAp_T7_P"> 
          <listOfParameters> 
            <parameter name="c2" value="0.1"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r3" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="T7_RNAp_T7_P"/> 
          <specieReference specie="ATP" stoichiometry="381"/> 
          <specieReference specie="GTP" stoichiometry="429"/> 
          <specieReference specie="UTP" stoichiometry="369"/> 
          <specieReference specie="CTP" stoichiometry="377"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="T7_RNAp"/> 
          <specieReference specie="T7_P"/> 
          <specieReference specie="geneA_mRNA"/> 
          <specieReference specie="PPi" stoichiometry="1556"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c3*(T7_RNAp_T7_P/vol)*(ATP/(ATP+km3_ATP))*(GTP/(GTP+km3_GTP))*(CTP/(CTP+km3_C
TP))*(UTP/(UTP+km3_UTP))"> 
          <listOfParameters> 
            <parameter name="c3" value="5e-017"/> 
            <parameter name="vol" value="5e-016"/> 
            <parameter name="km3_ATP" value="301"/> 
            <parameter name="km3_GTP" value="301"/> 
            <parameter name="km3_CTP" value="301"/> 
            <parameter name="km3_UTP" value="301"/> 
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          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r4" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="geneA_mRNA"/> 
          <specieReference specie="RNase"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="RNase"/> 
          <specieReference specie="AMP" stoichiometry="381"/> 
          <specieReference specie="GMP" stoichiometry="429"/> 
          <specieReference specie="UMP" stoichiometry="369"/> 
          <specieReference specie="CMP" stoichiometry="377"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c4*(Prot/vol)*RNase/(RNase+km4_RNase*(1+(T7_RNAp/km4_T7_RNAp)+(Pro_A/km4_Pro_A)
+(Prot/km4_Prot)))"> 
          <listOfParameters> 
            <parameter name="c4" value="5e-033"/> 
            <parameter name="km4_RNase" value="301"/> 
            <parameter name="km4_T7_RNAp" value="301"/> 
            <parameter name="km4_Prot" value="301"/> 
            <parameter name="km4_Pro_A" value="301"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r5" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="geneA_mRNA"/> 
          <specieReference specie="Rib_s"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="Rib_s_geneA_mRNA"/> 
        </listOfProducts> 
        <kineticLaw formula="c5*Rib_s*geneA_mRNA/vol"> 
          <listOfParameters> 
            <parameter name="c5" value="1e-018"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r6" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="Rib_s_geneA_mRNA"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="geneA_mRNA"/> 
          <specieReference specie="Rib_s"/> 
        </listOfProducts> 
        <kineticLaw formula="c6*Rib_s_geneA_mRNA"> 
          <listOfParameters> 
            <parameter name="c6" value="0.1"/> 
          </listOfParameters> 
        </kineticLaw> 
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      </reaction> 
      <reaction name="r7" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="Rib_s_geneA_mRNA"/> 
          <specieReference specie="Rib_l"/> 
          <specieReference specie="GTP" stoichiometry="1552"/> 
          <specieReference specie="ATP" stoichiometry="517"/> 
          <specieReference specie="AA_A" stoichiometry="44"/> 
          <specieReference specie="AA_C" stoichiometry="9"/> 
          <specieReference specie="AA_D" stoichiometry="27"/> 
          <specieReference specie="AA_E" stoichiometry="43"/> 
          <specieReference specie="AA_F" stoichiometry="22"/> 
          <specieReference specie="AA_G" stoichiometry="40"/> 
          <specieReference specie="AA_H" stoichiometry="7"/> 
          <specieReference specie="AA_I" stoichiometry="31"/> 
          <specieReference specie="AA_K" stoichiometry="23"/> 
          <specieReference specie="AA_L" stoichiometry="53"/> 
          <specieReference specie="AA_M" stoichiometry="13"/> 
          <specieReference specie="AA_N" stoichiometry="18"/> 
          <specieReference specie="AA_P" stoichiometry="25"/> 
          <specieReference specie="AA_Q" stoichiometry="20"/> 
          <specieReference specie="AA_R" stoichiometry="34"/> 
          <specieReference specie="AA_S" stoichiometry="29"/> 
          <specieReference specie="AA_T" stoichiometry="29"/> 
          <specieReference specie="AA_W" stoichiometry="8"/> 
          <specieReference specie="AA_V" stoichiometry="21"/> 
          <specieReference specie="AA_Y" stoichiometry="21"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="geneA_mRNA"/> 
          <specieReference specie="Rib_s"/> 
          <specieReference specie="Rib_l"/> 
          <specieReference specie="Pro_A"/> 
          <specieReference specie="Pi" stoichiometry="2069"/> 
          <specieReference specie="GDP" stoichiometry="1552"/> 
          <specieReference specie="ADP" stoichiometry="517"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c7*(Rib_l/vol)*(ATP/(ATP+km7_ATP))*(GTP/(GTP+km7_GTP))*(Rib_s_geneA_mRNA/(Rib_s_g
eneA_mRNA+km7_Rib_s_geneA_mRNA))*(AA_I/(AA_I+km7_AA_I))*(AA_M/(AA_M+km7_AA_M))*(AA_
T/(AA_T+km7_AA_T))*(AA_D/(AA_D+km7_AA_D))*(AA_P/(AA_P+km7_AA_P))*(AA_F/(AA_F+km7_AA_
F))*(AA_R/(AA_R+km7_AA_R))*(AA_G/(AA_G+km7_AA_G))*(AA_L/(AA_L+km7_AA_L))*(AA_W/(AA_W
+km7_AA_W))*(AA_N/(AA_N+km7_AA_N))*(AA_K/(AA_K+km7_AA_K))*(AA_C/(AA_C+km7_AA_C))*(A
A_H/(AA_H+km7_AA_H))*(AA_Q/(AA_Q+km7_AA_Q))*(AA_A/(AA_A+km7_AA_A))*(AA_E/(AA_E+km7_
AA_E))*(AA_S/(AA_S+km7_AA_S))*(AA_Y/(AA_Y+km7_AA_Y))*(AA_V/(AA_V+km7_AA_V))"> 
          <listOfParameters> 
            <parameter name="c7" value="2.5e-018"/> 
            <parameter name="vol" value="5e-016"/> 
            <parameter name="km7_ATP" value="301"/> 
            <parameter name="km7_GTP" value="301"/> 
            <parameter name="km7_Rib_s_geneA_mRNA" value="301"/> 
            <parameter name="km7_AA_I" value="301"/> 
            <parameter name="km7_AA_M" value="301"/> 
            <parameter name="km7_AA_T" value="301"/> 
            <parameter name="km7_AA_D" value="301"/> 
            <parameter name="km7_AA_P" value="301"/> 
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            <parameter name="km7_AA_F" value="301"/> 
            <parameter name="km7_AA_R" value="301"/> 
            <parameter name="km7_AA_G" value="301"/> 
            <parameter name="km7_AA_L" value="301"/> 
            <parameter name="km7_AA_W" value="301"/> 
            <parameter name="km7_AA_N" value="301"/> 
            <parameter name="km7_AA_K" value="301"/> 
            <parameter name="km7_AA_C" value="301"/> 
            <parameter name="km7_AA_H" value="301"/> 
            <parameter name="km7_AA_Q" value="301"/> 
            <parameter name="km7_AA_A" value="301"/> 
            <parameter name="km7_AA_E" value="301"/> 
            <parameter name="km7_AA_S" value="301"/> 
            <parameter name="km7_AA_Y" value="301"/> 
            <parameter name="km7_AA_V" value="301"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r8" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="Pro_A"/> 
          <specieReference specie="AA_E"/> 
          <specieReference specie="ATP"/> 
          <specieReference specie="AA_C"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="Pro_A"/> 
          <specieReference specie="ADP"/> 
          <specieReference specie="Pi"/> 
          <specieReference specie="GC"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c8*(Pro_A/vol)*(AA_E/(AA_E+km8_AA_E))*(ATP/(ATP+km8_ATP))*(AA_C/(AA_C+km8_AA_C
))"> 
          <listOfParameters> 
            <parameter name="c8" value="2.5e-016"/> 
            <parameter name="km8_ATP" value="301"/> 
            <parameter name="km8_AA_E" value="301"/> 
            <parameter name="km8_AA_C" value="301"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r9" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="Pro_A"/> 
          <specieReference specie="Prot"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="Prot"/> 
          <specieReference specie="AA_A" stoichiometry="44"/> 
          <specieReference specie="AA_C" stoichiometry="9"/> 
          <specieReference specie="AA_D" stoichiometry="27"/> 
          <specieReference specie="AA_E" stoichiometry="43"/> 
          <specieReference specie="AA_F" stoichiometry="22"/> 
          <specieReference specie="AA_G" stoichiometry="40"/> 
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          <specieReference specie="AA_H" stoichiometry="7"/> 
          <specieReference specie="AA_I" stoichiometry="31"/> 
          <specieReference specie="AA_K" stoichiometry="23"/> 
          <specieReference specie="AA_L" stoichiometry="53"/> 
          <specieReference specie="AA_M" stoichiometry="13"/> 
          <specieReference specie="AA_N" stoichiometry="18"/> 
          <specieReference specie="AA_P" stoichiometry="25"/> 
          <specieReference specie="AA_Q" stoichiometry="20"/> 
          <specieReference specie="AA_R" stoichiometry="34"/> 
          <specieReference specie="AA_S" stoichiometry="29"/> 
          <specieReference specie="AA_T" stoichiometry="29"/> 
          <specieReference specie="AA_W" stoichiometry="8"/> 
          <specieReference specie="AA_V" stoichiometry="21"/> 
          <specieReference specie="AA_Y" stoichiometry="21"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c9*(Prot/vol)*Pro_A/(Pro_A+km9_Pro_A*(1+(RNase/km9_RNase)+(T7_RNAp/km9_T7_RNAp)
+(Prot/km9_Prot)))"> 
          <listOfParameters> 
            <parameter name="c9" value="5e-030"/> 
            <parameter name="km9_Pro_A" value="301"/> 
            <parameter name="km9_RNase" value="301"/> 
            <parameter name="km9_T7_RNAp" value="301"/> 
            <parameter name="km9_Prot" value="301"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r10" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="RNase"/> 
          <specieReference specie="Prot"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="Prot"/> 
          <specieReference specie="AA_A" stoichiometry="50"/> 
          <specieReference specie="AA_C" stoichiometry="50"/> 
          <specieReference specie="AA_D" stoichiometry="50"/> 
          <specieReference specie="AA_E" stoichiometry="50"/> 
          <specieReference specie="AA_F" stoichiometry="50"/> 
          <specieReference specie="AA_G" stoichiometry="50"/> 
          <specieReference specie="AA_H" stoichiometry="50"/> 
          <specieReference specie="AA_I" stoichiometry="50"/> 
          <specieReference specie="AA_K" stoichiometry="50"/> 
          <specieReference specie="AA_L" stoichiometry="50"/> 
          <specieReference specie="AA_M" stoichiometry="50"/> 
          <specieReference specie="AA_N" stoichiometry="50"/> 
          <specieReference specie="AA_P" stoichiometry="50"/> 
          <specieReference specie="AA_Q" stoichiometry="50"/> 
          <specieReference specie="AA_R" stoichiometry="50"/> 
          <specieReference specie="AA_S" stoichiometry="50"/> 
          <specieReference specie="AA_T" stoichiometry="50"/> 
          <specieReference specie="AA_W" stoichiometry="50"/> 
          <specieReference specie="AA_V" stoichiometry="50"/> 
          <specieReference specie="AA_Y" stoichiometry="50"/> 
        </listOfProducts> 
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        <kineticLaw 
formula="c10*(Prot/vol)*RNase/(RNase+km10_RNase*(1+(T7_RNAp/km10_T7_RNAp)+(Pro_A/km10_Pr
o_A)+(Prot/km10_Prot)))"> 
          <listOfParameters> 
            <parameter name="c10" value="5e-030"/> 
            <parameter name="km10_RNase" value="301"/> 
            <parameter name="km10_T7_RNAp" value="301"/> 
            <parameter name="km10_Prot" value="301"/> 
            <parameter name="km10_Pro_A" value="301"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r11" reversible="false"> 
        <listOfReactants> 
          <specieReference specie="T7_RNAp"/> 
          <specieReference specie="Prot"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="Prot"/> 
          <specieReference specie="AA_A" stoichiometry="50"/> 
          <specieReference specie="AA_C" stoichiometry="50"/> 
          <specieReference specie="AA_D" stoichiometry="50"/> 
          <specieReference specie="AA_E" stoichiometry="50"/> 
          <specieReference specie="AA_F" stoichiometry="50"/> 
          <specieReference specie="AA_G" stoichiometry="50"/> 
          <specieReference specie="AA_H" stoichiometry="50"/> 
          <specieReference specie="AA_I" stoichiometry="50"/> 
          <specieReference specie="AA_K" stoichiometry="50"/> 
          <specieReference specie="AA_L" stoichiometry="50"/> 
          <specieReference specie="AA_M" stoichiometry="50"/> 
          <specieReference specie="AA_N" stoichiometry="50"/> 
          <specieReference specie="AA_P" stoichiometry="50"/> 
          <specieReference specie="AA_Q" stoichiometry="50"/> 
          <specieReference specie="AA_R" stoichiometry="50"/> 
          <specieReference specie="AA_S" stoichiometry="50"/> 
          <specieReference specie="AA_T" stoichiometry="50"/> 
          <specieReference specie="AA_W" stoichiometry="50"/> 
          <specieReference specie="AA_V" stoichiometry="50"/> 
          <specieReference specie="AA_Y" stoichiometry="50"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c11*(Prot/vol)*T7_RNAp/(T7_RNAp+km11_T7_RNAp*(1+(Pro_A/km11_Pro_A)+(RNase/km11_
RNase)+(Prot/km11_Prot)))"> 
          <listOfParameters> 
            <parameter name="c11" value="5e-030"/> 
            <parameter name="km11_RNase" value="301"/> 
            <parameter name="km11_Prot" value="301"/> 
            <parameter name="km11_Pro_A" value="301"/> 
            <parameter name="km11_T7_RNAp" value="301"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
      <reaction name="r12" reversible="false"> 
        <listOfReactants> 
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          <specieReference specie="Prot"/> 
          <specieReference specie="Prot"/> 
        </listOfReactants> 
        <listOfProducts> 
          <specieReference specie="Prot"/> 
          <specieReference specie="AA_A" stoichiometry="50"/> 
          <specieReference specie="AA_C" stoichiometry="50"/> 
          <specieReference specie="AA_D" stoichiometry="50"/> 
          <specieReference specie="AA_E" stoichiometry="50"/> 
          <specieReference specie="AA_F" stoichiometry="50"/> 
          <specieReference specie="AA_G" stoichiometry="50"/> 
          <specieReference specie="AA_H" stoichiometry="50"/> 
          <specieReference specie="AA_I" stoichiometry="50"/> 
          <specieReference specie="AA_K" stoichiometry="50"/> 
          <specieReference specie="AA_L" stoichiometry="50"/> 
          <specieReference specie="AA_M" stoichiometry="50"/> 
          <specieReference specie="AA_N" stoichiometry="50"/> 
          <specieReference specie="AA_P" stoichiometry="50"/> 
          <specieReference specie="AA_Q" stoichiometry="50"/> 
          <specieReference specie="AA_R" stoichiometry="50"/> 
          <specieReference specie="AA_S" stoichiometry="50"/> 
          <specieReference specie="AA_T" stoichiometry="50"/> 
          <specieReference specie="AA_W" stoichiometry="50"/> 
          <specieReference specie="AA_V" stoichiometry="50"/> 
          <specieReference specie="AA_Y" stoichiometry="50"/> 
        </listOfProducts> 
        <kineticLaw 
formula="c12*(Prot/vol)*Prot/(Prot+km12_Prot*(1+(T7_RNAp/km12_T7_RNAp)+(Pro_A/km12_Pro_A)+(R
Nase/km12_RNase)))"> 
          <listOfParameters> 
            <parameter name="c12" value="5e-030"/> 
            <parameter name="km12_RNase" value="301"/> 
            <parameter name="km12_T7_RNAp" value="301"/> 
            <parameter name="km12_Prot" value="301"/> 
            <parameter name="km12_Pro_A" value="301"/> 
            <parameter name="vol" value="5e-016"/> 
          </listOfParameters> 
        </kineticLaw> 
      </reaction> 
    </listOfReactions> 
  </model> 
</sbml> 
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Model Parameters 
 
Table C.1: Composition of geneA and proteins in the geneA_CFTT_0p0 model. 
 

Stoichiometry of Molecules 
Nucleotide composition of the geneA gene ATP 381 

GTP 429 
CTP 369 
UTP 377 

Energy requirements for Pro_A formation ATP 517 
GTP 1552 

Amino acid composition of Pro_A protein  isoleucine 31 
methionine 13 
threonine 29 
aspartic acid 27 
proline 25 
phenylalanine 22 
arginine 34 
glycine 40 
leucine 53 
tryptophan 8 
asparagine 18 
lysine 23 
cysteine 9 
histidine 7 
glutamine 20 
alanine 44 
glutamic acid 43 
serine 29 
tyrosine 21 
valine 21 

Amino acid composition of T7_RNAp isoleucine 50 
methionine 50 
threonine 50 
aspartic acid 50 
proline 50 
phenylalanine 50 
arginine 50 
glycine 50 
leucine 50 
tryptophan 50 
asparagine 50 
lysine 50 
cysteine 50 
histidine 50 
glutamine 50 
alanine 50 
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glutamic acid 50 
serine 50 
tyrosine 50 
valine 50 

Amino acid composition of RNase isoleucine 50 
methionine 50 
threonine 50 
aspartic acid 50 
proline 50 
phenylalanine 50 
arginine 50 
glycine 50 
leucine 50 
tryptophan 50 
asparagine 50 
lysine 50 
cysteine 50 
histidine 50 
glutamine 50 
alanine 50 
glutamic acid 50 
serine 50 
tyrosine 50 
valine 50 

Amino acid composition of the generic Prot  isoleucine 50 
methionine 50 
threonine 50 
aspartic acid 50 
proline 50 
phenylalanine 50 
arginine 50 
glycine 50 
leucine 50 
tryptophan 50 
asparagine 50 
lysine 50 
cysteine 50 
histidine 50 
glutamine 50 
alanine 50 
glutamic acid 50 
serine 50 
tyrosine 50 
valine 50 

 



 

60 
 

Table C.2: Numerical values for model reaction parameters for the discrete-stochastic (D-S) and 
the continuous-deterministic (C-D) models. 
 

Reaction Parameters 

 Parameter D-S Model C-D Model 

r1 - association of T7 RNA polymerase 
(T7_RNAp) with T7 promoter (T7_P) on geneA 
gene 

k1 1.0e-18 6.02e-01 

r2 - dissociation of T7 RNA polymerase-T7 
promoter complex k2 1.0e-01 1.0e-01 

r3 - transcription of the geneA gene to form 
geneA_mRNA (lumped reaction) 

k3 5e-017 1.0e-01 
km3_ATP 301 1 
km3_GTP 301 1 
km3_CTP 301 1 
km3_UTP 301 1 

r4 - degradation of geneA_mRNA by RNase 
(lumped reaction) 

k4 5.0e-025 1.0e-09 
km4_geneA_mRNA 301 1 

r5 - association of the small ribosomal unit 
(Rib_s) with geneA_mRNA ribosomal binding 
site 

k5 1e-18 6.02e-01 

r6 - dissociation of Rib_s-geneA_mRNA 
complex k6 1e-01 1e-01 

r7 - translation of geneA mRNA to form the 
Pro_A protein (lumped reaction) 

k7 2.5e-18 5e-03 
km7_geneA_mRNA 301 1 
km7_ATP 301 1 
km7_GTP 301 1 
km7_AA_I 301 1 
km7_AA_M 301 1 
km7_AA_T 301 1 
km7_AA_D 301 1 
km7_AA_P 301 1 
km7_AA_F 301 1 
km7_AA_R 301 1 
km7_AA_G 301 1 
km7_AA_L 301 1 
km7_AA_W 301 1 
km7_AA_N 301 1 
km7_AA_K 301 1 
km7_AA_C 301 1 
km7_AA_H 301 1 
km7_AA_Q 301 1 
km7_AA_A 301 1 
km7_AA_E 301 1 
km7_AA_S 301 1 
km7_AA_Y 301 1 
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km7_AA_V 301 1 
r8 - production of Prod_A using Pro_A (lumped 
reaction) 

k8 7.0e-017 1.4e-01 
km8_ATP  301 1 
km8_AA_C 301 1 
km8_AA_E 301 1 

r9 - degradation of Pro_A by the generic 
protease (lumped reaction) 

k9 5.0e-025 1.0e-09 
km9_T7_RNAp 301 1 
km9_Pro_A 301 1 
km9_RNase 301 1 
km9_Prot 301 1 

r10 - degradation of T7_RNAp by the generic 
protease (lumped reaction) 

k10 5.0e-025 1.0e-09 
km10_T7_RNAp 301 1 
km10_Pro_A 301 1 
km10_RNase 301 1 
km10_Prot 301 1 

r11 - degradation of RNase by the generic 
protease (lumped reaction) 

k11 5.0e-025 1.0e-09 
km11_T7_RNAp 301 1 
km11_Pro_A 301 1 
km11_RNase 301 1 
km11_Prot 301 1 

r12 - self-degradation of the generic protease 
Prot (lumped reaction) 

k12 5.0e-025 1.0e-09 
km12_T7_RNAp 301 1 
km12_Pro_A 301 1 
km12_RNase 301 1 
km12_Prot 301 1 
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Table C.3:  Initial conditions for the state variables in geneA_CFTT_0p0 model. 
 

Initial Number of Molecules in State Variables 

 D-S 
(# of molecules)* 

C-D 
( M) 

T7_P 1 0.00332 
T7_RNAp 301 1 
T7_RNAp-T7_P 0 0 
ATP 189329 629 
GTP 234178 778 
CTP 150500 500 
UTP 166754 554 
geneA_mRNA 0 0 
PPi 0 0 
AMP 0 0 
UMP 0 0 
CMP 6622 22 
GMP 0 0 
Rib_s 301 1 
Rib_s-geneA_mRNA 0 0 
Rib_l 301 1 
AA_I - isoleucine  52976 176 
AA_M - methionine  37324 124 
AA_T - threonine  8428 28 
AA_D - aspartic acid  61705 205 
AA_P - proline  205884 684 
AA_F - phenylalanine  45752 152 
AA_R - arginine  49665 165 
AA_G - glycine  76454 254 
AA_L - leucine  44247 147 
AA_W - tryptophan  29498 98 
AA_N - asparagine  12943 43 
AA_K - lysine  21973 73 
AA_C - cysteine  94213 313 
AA_H - histidine  33411 111 
AA_Q - glutamine  2307 7 
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AA_A - alanine  43645 145 
AA_E - glutamic acid  79163 263 
AA_S - serine  35217 117 
AA_Y - tyrosine  56588 188 
AA_V - valine  37926 126 
Pro_A 0 0 
GDP 15652 52 
Pi 0 0 
ADP 29197 97 
Sub_A 30100 100 
Sub_B 45002 150 
Prod_A 0 0 
RNase 301 1 
Prot 301 1 

 
* Initial number of molecules of nucleotides and amino acids are based on analytical 
measurements in a commercial gene expression kit. 
 
 
 
 
 
 
 

 
 


